DNA repair phenotype and dietary antioxidant supplementation.

نویسندگان

  • Serena Guarnieri
  • Steffen Loft
  • Patrizia Riso
  • Marisa Porrini
  • Lotte Risom
  • Henrik E Poulsen
  • Lars O Dragsted
  • Peter Møller
چکیده

Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well-nourished subjects who ingested 600 g fruits and vegetables, or tablets containing the equivalent amount of vitamins and minerals, for 24 d; (2) poorly nourished male smokers who ingested 500 mg vitamin C/d as slow- or plain-release formulations together with 182 mg vitamin E/d for 4 weeks. The mean baseline levels of DNA repair incisions were 65.2 (95 % CI 60.4, 70.0) and 86.1 (95 % CI 76.2, 99.9) among the male smokers and well-nourished subjects, respectively. The male smokers also had high baseline levels of oxidised guanines in MNBC. After supplementation, only the male smokers supplemented with slow-release vitamin C tablets had increased DNA repair activity (27 (95 % CI 12, 41) % higher incision activity). These subjects also benefited from the supplementation by reduced levels of oxidised guanines in MNBC. In conclusion, nutritional status, DNA repair activity and DNA damage are linked, and beneficial effects of antioxidants might only be observed among poorly nourished subjects with high levels of oxidised DNA damage and low repair activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes.

Epidemiological evidence has shown that the habitual consumption of diets high in fruits and vegetables is associated with reduced risk of cancers. The challenge is to identify causal mechanisms of effect. The aim of the current study was to determine whether an increase in rate of removal of DNA single-strand breaks (SSB) following oxidative challenge could be provoked ex vivo in peripheral bl...

متن کامل

Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle.

High-fat diets are reported to increase oxidative stress in a variety of tissues, whereas antioxidant supplementation prevents many diseases attributed to high-fat diet. Rodent skeletal muscle mitochondrial DNA has been shown to be a potential site of oxidative damage. We hypothesized that the effects of a high-fat diet on skeletal muscle DNA functions would be attenuated or partially reversed ...

متن کامل

Supplementation of a western diet with golden kiwifruits (Actinidia chinensis var.'Hort 16A':) effects on biomarkers of oxidation damage and antioxidant protection

BACKGROUND The health positive effects of diets high in fruits and vegetables are generally not replicated in supplementation trials with isolated antioxidants and vitamins, and as a consequence the emphasis of chronic disease prevention has shifted to whole foods and whole food products. METHODS We carried out a human intervention trial with the golden kiwifruit, Actinidia chinensis, measuri...

متن کامل

Postprandial Activation of P53-Dependent DNA Repair

Background. Alterations in the expression levels of genes and proteins involved in oxidative stress and DNA damage response underlie the phenotypic changes associated with aging. We have investigated whether the quality of dietary fat alters postprandial gene expression and protein levels involved in p53-dependent DNA repair and whether the supplementation with Coenzyme Q 10 improves this situa...

متن کامل

Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress.

Apurinic/apyrimidinic endonuclease is a key enzyme in the process of base excision repair, required for the repair of spontaneous base damage that arises as a result of oxidative damage to DNA. In mice, this endonuclease is coded by the Apex gene, disruption of which is incompatible with embryonic life. Here we confirm the embryonic lethality of Apex-null mice and report the phenotypic characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The British journal of nutrition

دوره 99 5  شماره 

صفحات  -

تاریخ انتشار 2008